Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Advanced Materials Technologies ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2288891

ABSTRACT

Respiration monitoring of a large population is important in containing the spread of viral respiratory infections such as the coronavirus disease 2019 (COVID‐19). Current technologies, however, lack the ability in respiration monitoring of multiple human subjects in a long‐term, robust, and low‐cost manner. Herein, wireless respiration monitoring of multiple human subjects using facemask‐integrated flexible meta‐antennas is demonstrated. The flexible meta‐antenna has an architecture of multi‐layered anisotropic hole‐array, which is optimized by theory and simulations to achieve high performances including good antenna gain, robustness against body interferences, and high air permeability favorable for facemask integration. A person's respiration patterns and respiration rates are wirelessly obtained by the meta‐antenna integrated with a temperature‐sensor‐embedded chip. Respiration monitoring of multiple subjects in long range and long term during daily activities is simultaneously demonstrated. In addition, a real‐time data processing system is introduced in which a local server, a cloud server, and an application layer are implemented for the real‐time display of respiration patterns and automatic recognition of abnormal status. The design of flexible meta‐antennas may lead to a distinct class of physiological sensors over a large population for applications in pandemic control and personalized healthcare. [ABSTRACT FROM AUTHOR] Copyright of Advanced Materials Technologies is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

2.
Journal of Hazardous Materials ; 443:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2237278

ABSTRACT

Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control. [Display omitted] • PI/SSL system selectively inactivates cells by targeting intracellular DNA first. • PI/SSL treatment inhibits bacterial regrowth and horizontal gene transfer potential. • The bactericidal effect of 1O 2 in PI/SSL system was proposed for the first time. • Metabolomics showed that ROS accumulation is one of the antibacterial mechanisms. • PI/SSL system holds great promise in decontamination of the actual water system. [ FROM AUTHOR]

3.
Front Pharmacol ; 13: 930593, 2022.
Article in English | MEDLINE | ID: covidwho-2148124

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.

4.
Journal of Hazardous Materials ; : 130177, 2022.
Article in English | ScienceDirect | ID: covidwho-2069326

ABSTRACT

Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control.

5.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-2046017

ABSTRACT

Since the end of 2019, COVID-19 caused by SARS-CoV-2 has spread worldwide, and the understanding of the new coronavirus is in a preliminary stage. Currently, immunotherapy, cell therapy, antiviral therapy, and Chinese herbal medicine have been applied in the clinical treatment of the new coronavirus;however, more efficient and safe drugs to control the progress of the new coronavirus are needed. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) may provide new therapeutic targets for novel coronavirus treatments. The first aim of this paper is to review research progress on COVID-19 in the respiratory, immune, digestive, circulatory, urinary, reproductive, and nervous systems. The second aim is to review the body systems and potential therapeutic targets of lncRNAs, miRNAs, and circRNAs in patients with COVID-19. The current research on competing endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA) in SARS-CoV-2 is summarized. Finally, we predict the possible therapeutic targets of four lncRNAs, MALAT1, NEAT1, TUG1, and GAS5, in COVID-19. Importantly, the role of PTEN gene in the ceRNA network predicted by lncRNA MALAT1 and lncRNA TUG1 may help in the discovery and clinical treatment of effective drugs for COVID-19.

6.
Int J Biol Sci ; 18(7): 3066-3081, 2022.
Article in English | MEDLINE | ID: covidwho-1893288

ABSTRACT

During the development of COVID-19 caused by SARS-CoV-2 infection from mild disease to severe disease, it can trigger a series of complications and stimulate a strong cellular and humoral immune response. However, the precise identification of blood immune cell response dynamics and the relevance to disease progression in COVID-19 patients remains unclear. We propose for the first time to use changes in cell numbers to establish new subgroups, which were divided into four groups: first from high to low cell number (H_L_Group), first from low to high (L_H_Group), continuously high (H_Group), and continuously low (L_Group). It was found that in the course of disease development. In the T cell subgroup, the immune response is mainly concentrated in the H_L_Group cell type, and the complications are mainly in the L_H_Group cell type. In the NK cell subgroup, the moderate patients are mainly related to cellular immunity, and the severe patients are mainly caused by the disease, while severe patients are mainly related to complications caused by diseases. Our study provides a dynamic response of immune cells in human blood during SARS-CoV-2 infection and the first subgroup analysis using dynamic changes in cell numbers, providing a new reference for clinical treatment of COVID-19.


Subject(s)
COVID-19 , Disease Progression , Humans , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2
7.
Management, Enterprise and Benchmarking in the 21st Century ; : 163-174, 2021.
Article in English | ProQuest Central | ID: covidwho-1624277

ABSTRACT

With the rapid development of economic globalization and information technology, distance learning makes students study without distance limitation. Nowadays, high-level education organizations are not only top students' privileges anymore, instead, everyone can get this opportunity due to distance learning. At the same time, studying at far-away organizations gradually comes true. Obviously, distance learning is influencing our life especially during the COVID-19 pandemic, which plays a pivotal role in education. However, it also has some disadvantages, such as the weak study motivation and study effect, and high requirement for devices. In this study, we examined some existing literature and our primary research will study the International students' attitudes and their expectations about distance learning in Hungary. The research purpose is to reveal the popularity of distance learning among International students and provide suggestions for future distance learning.

8.
Int J Biol Sci ; 17(4): 1079-1087, 2021.
Article in English | MEDLINE | ID: covidwho-1524445

ABSTRACT

Fibrinogen-associated protein (FREP) family is a family of proteins with a fibrin domain at the carboxyl terminus. Recent investigations illustrated that two members of FREP family, fibrinogen-like protein-1 (FGL1) and fibrinogen-like protein-2 (FGL2), play crucial roles in cancer by regulating the proliferation, invasion, and migration of tumor cells, or regulating the functions of immune cells in tumor microenvironment. Meanwhile, they are potential targets for medical intervention of tumor development. In this review, we discussed the structure, and the roles of FGL1 and FGL2 in tumors, especially the roles in regulating immune cell functions.


Subject(s)
Fibrinogen/metabolism , Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Humans , Immunotherapy , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction
9.
Psychol Health Med ; 27(3): 698-706, 2022 03.
Article in English | MEDLINE | ID: covidwho-1510805

ABSTRACT

The rapid development of the coronavirus disease 2019 (COVID-19) outbreak has brought great harm to physical and mental health of the public. This study aims to investigate the psychological status and sleep quality of the Chinese public during the outbreak of the COVID-19 and its related factors. The survey was conducted from February 17th to February 26th, 2020 in southwestern China. The snowball sampling method was used to invite subjects. Demographic data were collected, and mental status and sleep quality were assessed by the Generalized Anxiety Disorder-7 Scale (GAD-7), the Patient Health Questionnaire-9 (PHQ-9), and the Pittsburgh Sleep Quality Index (PSQI). Descriptive, univariate, and correlation analyses were used to investigate risk factors for psychological status and sleep patterns. A total of 1509 adults (713 males and 796 females) were enrolled in this study. The overall prevalence of anxiety, depression, and decreased sleep quality were 22.3%, 32.2% and 35.4%, respectively. Compared with females, male population has witnessed a higher prevalence of anxiety symptoms (25.1% vs 20.4%, P= 0.007) and depressive symptoms (34.6% vs 30.0%, P= 0.027). In addition, age, marital status, living situation, involvement in anti-pandemic work, basic health status and work status were significant risk factors for anxiety or depression (P< 0.05). During the COVID-19 outbreak, psychological problems and sleep disorders were prevalent among the Chinese public. More attention should be paid to males, the elderly, the solitary, the unemployed, front-line workers in pandemic prevention, and patients with chronic diseases.


Subject(s)
COVID-19 , Sleep Wake Disorders , Adult , Aged , Anxiety/epidemiology , Anxiety/psychology , Anxiety Disorders/epidemiology , COVID-19/epidemiology , China/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Depression/psychology , Disease Outbreaks , Female , Humans , Internet , Male , Prevalence , Risk Factors , SARS-CoV-2 , Sleep Wake Disorders/epidemiology , Surveys and Questionnaires
10.
Front Med (Lausanne) ; 8: 730441, 2021.
Article in English | MEDLINE | ID: covidwho-1450819

ABSTRACT

Objective: A considerable part of COVID-19 patients were found to be re-positive in the SARS-CoV-2 RT-PCR test after discharge. Early prediction of re-positive COVID-19 cases is of critical importance in determining the isolation period and developing clinical protocols. Materials and Methods: Ninety-one patients discharged from Wanzhou Three Gorges Central Hospital, Chongqing, China, from February 10, 2020 to March 3, 2020 were administered nasopharyngeal swab SARS-CoV-2 tests within 12-14 days, and 50 eligible patients (32 male and 18 female) with completed data were enrolled. Average age was 48 ± 11.5 years. All patients underwent non-enhanced chest CT on admission. A total of 568 radiomics features were extracted from the CT images, and 17 clinical factors were collected based on the medical record. Student's t-test and support vector machine-based recursive feature elimination (SVM-RFE) method were used to determine an optimal subset of features for the discriminative model development. Results: After Student's t-test, 62 radiomics features showed significant inter-group differences (p < 0.05) between the re-positive and negative cases, and none of the clinical features showed significant differences. These significant features were further selected by SVM-RFE algorithm, and a more compact feature subset containing only two radiomics features was finally determined, achieving the best predictive performance with the accuracy and area under the curve of 72.6% and 0.773 for the identification of the re-positive case. Conclusion: The proposed radiomics method has preliminarily shown potential in identifying the re-positive cases among the recovered COVID-19 patients after discharge. More strategies are to be integrated into the current pipeline to improve its precision, and a larger database with multi-clinical enrollment is required to extensively verify its performance.

11.
J Thorac Dis ; 13(6): 3628-3642, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1296313

ABSTRACT

BACKGROUND: To analyze the clinical characteristics and predictors for mortality of adult younger than 60 years old with severe coronavirus disease 2019 (COVID-19). METHODS: We retrospectively retrieved data for 152 severe inpatients with COVID-19 including 60 young patients in the Eastern Campus of Wuhan University affiliated Renmin Hospital in Wuhan, China, from January 31, 2020 to February 20, 2020. We recorded and analyzed patients' demographic, clinical, laboratory, and chest CT findings, treatment and outcomes data. RESULTS: Of those 60 severe young patients, 15 (25%) were died. Male was more predominant in deceased young patients (12, 80%) than that in recovered young patients (22, 49%). Hypertension was more common among deceased young patients (8, 53%) than that in recovered young patients (7, 16%). Compared with the recovered young patients, more deceased young patients presented with sputum (11, 73%), dyspnea (12, 80%) and fatigue (13, 87%). Only sputum, PSI and neutrophil counts were remained as independent predictors of death in a multivariate logistic regression model. Among ARDS patients, the recovered were administrated with corticosteroid earlier and anticoagulation. The addition of neutrophil counts >6.3×109/L to the SMART-COP score resulted in improved area under the curves. CONCLUSIONS: Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection in young deceased patients appears to cause exuberant inflammatory responses, leading to compromised oxygen exchange, coagulation and multi-organ dysfunction. In addition, young patients with ARDS could benefit from adjuvant early corticosteroid and anticoagulation therapy. The expanded SMART-COP could predict the fatal outcomes with optimal efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL